Tracking Marine Pollution
John E. Elliott and Kyle H. Elliott
Science 340, 556 (2013);
DOI: 10.1126/science.1235197

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 3, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/340/6132/556.full.html

This article cites 13 articles, 3 of which can be accessed free:
http://www.sciencemag.org/content/340/6132/556.full.html#ref-list-1

This article appears in the following subject collections:
Ecology
http://www.sciencemag.org/cgi/collection/ecology
(6). Next will be LIGO-India (7) and Kagra-Japan (8). Median error regions of 50 (or 6) degrees can be achieved with three (or five) interferometers (4, 9). The network will be sensitive to mergers out to 400 Mpc (or 750 Mpc) for three (or five) interferometers (2, 4). Low-latency gravitational wave localization volumes can be constructed within minutes to alert the astronomers to search for the relevant electromagnetic counterpart (4).

Theorists are working out the expected electromagnetic signature from neutron star and black hole mergers; the luminosity, time scale, and spectral energy distribution. The predicted counterpart is expected to be fainter than a supernova (but brighter than a nova), last for a few hours to a few days, and have red colors (10–12). Nucleosynthesis in the neutron-rich ejecta is expected to give elements with mass numbers ranging between 120 and 200. Indeed, the majority of gold in the universe may be produced during neutron star or black hole mergers (12, 13).

Observational astronomers are mobilizing large telescopes across the entire electromagnetic spectrum. For the tiny fraction of jets (<2.5%) beamed toward us, an all-sky gamma-ray monitor (such as the Fermi and Swift space-based telescopes) detecting contemporaneous emission would be the most straightforward identification. Radio astronomers have also recently brought online a wide array of low-frequency antenna arrays to look for a contemporaneous pulse and upgraded existing facilities (e.g., Jansky Very Large Array) to improve mapping speed.

Optical astronomers have the strongest arsenal to search wide areas efficiently to look for a counterpart to all gravitational wave events. Very wide-field cameras on all sizes of telescopes are being built: Zwicky Transient Facility (35 degrees2, 1.2 m; 2015), Dark Energy Camera (3 degrees2, 4 m; 2012), and HyperSuprimeCam (1.8 degrees2, 8.2 m; 2012). Opacity calculations suggest that there may be an emission peak in the infrared (12). Unfortunately, the infrared sky doesn’t have wide-field instrumentation at this time. Astronomers have proposed to build the Synoptic All-Sky Infrared telescope (SASIR; 0.2 to 1 degrees2) on the ground and the Wide-Field Infrared Survey Telescope (WFIRST; 0.3 degrees2) in space.

The biggest challenge ahead is that the transient sky is extremely dynamic, which results in a large number of false positives (4, 14). Because of the small solid angle occupied by galaxies on the sky, spatial coincidence with nearby galaxies can reduce the false positives from hundreds to just a few (4, 14). Unfortunately, we do not know the location of the center of the galaxy within the relevant horizon. Efforts are under way to complete our galaxy catalog using H-α narrow-band imaging in the optical and HI imaging in the radio. Systematic surveys are characterizing all types of transient phenomena in the local universe and have recently found multiple new distinct classes of elusive transients (15).

A complete inventory of transients and a complete catalog of nearby galaxies will empower us to find these needles in the haystack. Thus, there is a surge of excitement as the era of routine gravitational wave detection draws near—this search may prove to be the 21st-century gold rush.

References and Notes
2. J. Abadie et al., Class. Quantum Gravity 27, 173001 (2010).
5. G. M. Harry et al., Class. Quantum Gravity 27, 084006 (2010).

Acknowledgments: The author acknowledges generous support from the Hubble Fellowship and the Carnegie-Princeton Fellowship.

ENVIRONMENTAL SCIENCE

Tracking Marine Pollution

John E. Elliott† and Kyle H. Elliott‡

Visit a beach almost anywhere and you will see plastic waste floating in the water and heaped above the tide lines. That debris is both a source and an overt signal of the even more pervasive contamination of marine biota by persistent chemicals. Present at ultra-trace levels but often highly toxic, chemical pollutants can be challenging to measure and understand. As the most problematic compounds biomagnify in food chains, sampling of marine top predators yields a global picture of ocean pollution.

We have come a long way since Rachel Carson’s Silent Spring and subsequent reports of chemical contamination of even the most remote ecosystems, including effects on the survival and reproduction of coastal seabirds (1). Use of the worst chlorinated chemicals was banned or severely restricted through the 2001 Stockholm Convention. Increasing mercury levels in marine wildlife, among other reasons, led to the adoption in January 2013 of the global Minamata Convention on Mercury. But with thousands of new chemicals introduced annually, some will inevitably slip through the regulatory net to become the next persistent global contaminants. There is thus a continuing need for efficient monitoring.

Mammals, particularly pinnipeds and cetaceans, are useful sentinels for marine pollution (2). However, seabirds have several practical advantages. Variance in organochlorine concentrations in seabirds is less than in fish or marine mammals; thus, a small sample size of seabirds can provide greater statistical power in addition to reduced environmental impact and cost of sampling (3). Seabirds range widely across oceans, feeding as they move, yet return annually to breed in a single central place (see the figure). In one afternoon at a seabird colony, a biologist can sample an area of ocean that would cost millions of dollars to investigate using a scientific vessel. Nonlethal samples of blood, feathers, oils, and biopsies each provide information on dif-
How seabirds sample the marine environment. Cormorants forage mainly on fish in near-shore environments. Auk, such as the rhinoceros auklet, feed on smaller fish and zooplankton on the continental shelf. Pelagic seabirds such as the Leach’s storm petrel range across the offshore environment, feeding on zooplankton and larval fishes. They all return to breed in colonies, where they can be sampled for contaminants and tagged for tracking. As an example of the information that can be obtained, the graphs show data for two contaminants in rhinoceros auklet eggs at Lucy Island, northwest Canada: DDE, dichlorodiphenyltrichloroethylene (a DDT metabolite), and PBDEs, polybrominated diphenyl ethers (a flame retardant).
Siliencing a Metabolic Oncogene

Jiyeon Kim and Ralph J. DeBerardinis

Many human cancers, particularly gliomas and acute myelogenous leukemia (AML), contain mutations in the genes IDH1 or IDH2, which encode two isofoms of the metabolic enzyme isocitrate dehydrogenase (1,2). These mutant enzymes produce the (R)-enantiomer of 2-hydroxyglutaric acid [(R)-2HG], a molecule that inhibits histone- and DNA-modifying enzymes, thereby altering gene expression and promoting the acquisition of malignant features (3–5). Reports by Losman et al. (6) as well as by Wang et al. (7) and Rohle et al. (8) on pages 622 and 626 of this issue, respectively, find that inhibitors of the mutant forms of IDH1/2 suppress the growth of (R)-2HG-producing tumor cells (6–8). The findings imply that curtailing (R)-2HG supply normalizes gene expression and reverses malignancy.

Metabolic reprogramming in cancer has long been considered a potential source of therapeutic targets. However, much of this reprogramming reflects the enhancement of normal metabolic activities already present in nonmalignant tissue, rather than the appearance of novel activities confined to the tumor. This makes it challenging to develop strategies that impair tumor metabolism without disturbing metabolism elsewhere. By contrast, IDH1/2 mutations are somatically acquired and elicit an entirely new function for the enzymes (so-called “gain-of-function” or neomorphic activity) that is absent outside of the tumor (1–3). Wild-type IDH homodimers catalyze the nicotinamide adenine dinucleotide phosphate (NADP⁺)-dependent conversion of isocitrate to α-ketoglutarate. In tumors with monoallelic mutations in IDH1 or IDH2, heterodimers containing one mutant and one wild-type subunit catalyze the reduction of α-ketoglutarate to (R)-2HG, a reaction that depends on NADPH (the reduced form of NADP⁺) (see the figure) (3, 9). (R)-2HG accumulates to millimolar concentrations within the tumor (3). The identification of this particular metabolite as the product of mutant IDH1/2 is compelling because its (L)-enantiomer [(L)-2HG] is associated with pediatric brain tumors (10). These observations implicate mutant IDH1/2, and specifically (R)-2HG, as functional drivers of malignancy. More than half of “low-grade” gliomas (slow-growing but eventually lethal) and almost 10% of AML cases contain IDH1/2 mutations, and a number of other tumors (including chondrosarcomas and cholangiosarcoma) also harbor mutations in these genes.

A key insight into the role of IDH1/2 in cancer was that (R)-2HG interferes with dioxygenases that use α-ketoglutarate as a cosubstrate. These include enzymes that chemically modify histone proteins and DNA to orchestrate gene expression.

Reversing the perfect storm. Heterodimers of wild-type (wt) and mutant (mut) subunits of the metabolic enzymes IDH1/2 catalyze the production of (R)-2-hydroxyglutarate. Its accumulation impairs α-ketoglutarate–dependent dioxygenases, including those that modify DNA and histones (including the demethylation of 5-methylcytosine by TET-families) and histone demethylases of the JmjC domain-containing family). This alters the epigenetic landscape, thereby blocking cell differentiation and promoting the acquisition of malignant features. Inhibitors (AGI-6780 and AGI-5198) that block (R)-2 hydroxyglutarate–producing IDH isoforms limit the growth of glioma- and AML-derived cancer cells.