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Abstract
Remotely estimating prey-capture rates in wild animals is key to assess foraging success. In diving animals, accelerometers 
have been particularly useful to remotely detect prey captures and have been shown to be more precise than traditional esti-
mates relying on depth-derived measures (e.g., wiggles). However, validations of the accelerometry technique using a gold 
standard (i.e., with supervision) have been mostly restricted to shallow diving species, which can be equipped with camera-
loggers for visual validation of prey-capture events. In species diving near the euphotic limit (150–200 m), accelerometers 
remain mostly untested due to the difficulty of validating such methods in darkness at extreme depth in the wild. In addition, 
prey-pursuits in low-light conditions might not result in intense and long-duration acceleration signatures, as predator–prey 
perception likely occurs at close-range in the dark (i.e., the “visual-interactions hypothesis”). We combined accelerometers 
with beak-opening sensors (for validation) and depth recorders on a wild deep-diving seabird, the king penguin Aptenodytes 
patagonicus, to describe prey captures at depth and create predictive models using accelerometers. Surprisingly, prey pursuits 
and captures were similar in duration (3.9 ± 3.5 s) and intensity (0.78 ± 0.31 g) as shallow-diving species reported by similar 
studies. As accelerometry signatures were distinct, accelerometry-derived variables were almost twice as accurate (Mean-
squared error = 8.6) at predicting prey-capture events as depth-derived variables (“wiggles”, Mean-squared error = 16.0). As 
in the shallow-diving species, accelerometry outperforms traditional depth-derived models at measuring the foraging intake 
in deep-diving animals, highlighting the usefulness of accelerometers for measuring animal behavior.
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Introduction

Knowing where and when animals forage is an important 
aspect in ecology and conservation (Grémillet et al. 2004; 
Pichegru et al. 2010; Scheffer et al. 2010, Hays 2016). In 
deep-diving species, the identification of foraging hotspots 

has been mainly facilitated by the analysis of horizontal 
movements obtained from satellite or GPS technology (e.g., 
Trathan et al. 2008; Zimmer et al. 2008). Analytical tech-
niques applied to horizontal movements employ animal's 
speed, tortuosity, and step length to define Area Restricted 
Searches (ARS) and determine whether the animal is travel-
ling or foraging (Fauchald and Tveraa 2003; Langrock et al. 
2012).

As recent bio-logging devices record much more infor-
mation than just the location of an animal, several devices, 
such as camera loggers, mouth opening sensors, temperature 
loggers inserted in the digestive track, depth loggers and 
accelerometers, have been used to remotely assess foraging 
success (e.g., prey capture rate) in diving animals (Kokobun 
et al. 2011; Viviant et al. 2014; Volpov et al. 2015). In addi-
tion, some species-specific methods have been used, such as 
buoyancy change in seals (Adachi et al. 2021), echolocation 
clicks in whales (Miller et al. 2004) and visceral warming in 
tunas (Bestley et al. 2008). While most of these approaches 

Responsible Editor: T.A. Clay.

Responsible Editor: T.A. Clay Reviewers:undisclosed experts.

 * Émile Brisson-Curadeau 
 emile.brissoncuradeau@mail.mcgill.ca

1 Centre d’Etudes Biologiques de Chizé, CNRS, UMR 7372, 
79360 Villiers en Bois, France

2 Université McGill, 21111 Lakeshore Road, 
Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada

3 CNRS, IPHC UMR 7178, Université de Strasbourg, 
67000 Strasbourg, France

http://orcid.org/0000-0002-6222-251X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00227-021-03968-y&domain=pdf


 Marine Biology (2021) 168:156

1 3

156 Page 2 of 10

are in theory widely applicable across taxa, their use has 
been limited, because their deployment on wild animals can 
be challenging. For instance, mouth opening sensors use 
a magnet on one part of the mouth and a Hall sensor on 
the opposing part to detect whenever the animal opens its 
mouth or beak, and are typically a precise and powerful tool 
to detect prey captures (Wilson et al., 2002; Hanuise et al. 
2010; Viviant et al. 2014). However, the equipping of these 
loggers can require invasive surgical procedures to conceal 
beneath the skin the electrical lead between the Hall sen-
sor and data logger. Temperature loggers detect drops in 
temperature in the oesophageal track due to the ingestion 
of prey. While these loggers provide very good estimates 
of prey-capture rates, they are again quite invasive for the 
animal (Charrassin et al. 2001; Horsburgh et al. 2008). Fur-
thermore, only a small proportion of Hall sensors or tem-
perature loggers deployed provide useful information, due to 
difficulties with wiring or retrieval (Charrassin et al. 2001; 
Wilson et al. 2002).

Camera loggers attached to the back or head of the animal 
have been used more recently, with high-quality miniature 
cameras now available on the market (Kokobun et al. 2011; 
Watanabe and Takahashi 2013; Watanabe et al. 2014; Vol-
pov et al. 2015). However, success of this method on deep-
diving animals is mixed, as prey captures are not systemati-
cally detected at low-light depths, despite the use of external 
LEDs (Naito et al. 2013, Brisson-Curadeau et al. 2019). 
For this reason, camera-loggers equipped on deep-diving 
animals have been mostly used to evaluate the diet of an 
animal—which requires only a few “good” pictures/footage 
to be assessed—rather than systematically quantifying prey 
capture (Naito et al. 2013, Naito et al. 2017, Adachi et al. 
2021, Yoshino et al. 2020; but see Watanabe et al. 2020).

As most of the previously described approaches are dif-
ficult to apply in the field, the use of depth profiles has been 
historically one of the most widely used methods to estimate 
prey capture in deep-diving animals (e.g., Kirkwood and 
Robertson 1997; Zimmer et al. 2011; Hanuise et al. 2013; 
Scheffer et al. 2016). Depth loggers are generally easy to 
deploy and can provide information on foraging behav-
ior. In particular, many derived variables (descent angle, 
maximum depth, dive shape, etc.) are indicative of foraging 
dives (Schreer et al. 1996; Halsey et al. 2007, 2010). The 
presence of short up-and-down motions (called “wiggles”, 
see Fig. 1) has been particularly used in the literature to 
estimate the number of prey captures in a dive (e.g., Char-
rassin et al. 2001; Bost et al. 2007; Zimmer et al. 2011; 
Scheffer et al. 2016; Tessier & Bost 2020). Other commonly 
used depth-derived variables include maximum depth, dive 
duration and dive shape, where deeper dives with propor-
tionally longer bottom time are indicative of increased feed-
ing activity (Ropert-Coudert et al. 2000; Mori et al. 2002; 
Elliott et al. 2008). While these variables are easy to collect 

and compute, their accuracy to quantify prey capture can be 
rather low, at least in some species (Bost et al. 2007; Hanuise 
et al. 2010; Carroll et al. 2014).

Accelerometers, such as depth loggers, are small and eas-
ily deployable, with few effects on the fitness of the equipped 
animal (Chivers et al. 2016). They can detect movement in 
three dimensions (x,y and z axis) and at a higher resolution 
than depth loggers, therefore, providing more information 
on the behavior of the animals. Moreover, recent studies 
have shown accelerometers to be more accurate at estimat-
ing prey capture than the traditional use of wiggles (e.g., Del 
Caño et al. 2021). Consequently, their use to quantify prey 
capture has been increasing in the past few years (Gallon 
et al. 2013; Carroll et al. 2018; Yoshino et al. 2020). Yet, 
testing the accuracy of accelerometry at predicting foraging 
events in the wild has been mainly limited to animals diving 
above 100 m depth (hereafter referred as “shallow-diving 

Fig. 1  Depth-profile, Hall events, raw acceleration and filtered accel-
eration of a representative king penguin dive. Point A represents a 
false positive under the 0.15  g threshold, but a true negative under 
the 0.3 g threshold. Point B represents a true positive under the 0.15 g 
threshold, but a false negative under the 0.3 g threshold. Point C rep-
resents a true positive under both thresholds
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species”), mostly feeding on plankton and crustaceans, 
with validation on camera loggers (Kokobun et al. 2011, 
Watanabe and Takahashi 2013; Watanabe et al. 2014; Sato 
et al. 2015; Volpov et al. 2015). While acceleration has been 
used on deep-diving animals to compute prey-capture rates 
(Yoshino et al. 2020; Adachi et al. 2021), true validation 
at deeper depths is rare in the literature, because low-light 
conditions limit the potential of camera loggers for valida-
tion (but see Watanabe et al. 2020). In addition, it is possible 
that prey-pursuits near or below the limit of the euphotic 
zone are shorter in duration and amplitude, as predator–prey 
perception occurs at closer range. The “visual-interaction 
hypothesis” states that since the escape behavior is less effi-
cient at depth due to reduced detection distance by both prey 
and predator, deep ectothermic fish are less reactive and have 
a low metabolism (Childress et al. 1990; Drazen and Sei-
bel 2007). This could potentially reduce the detectability of 
prey-capture attempts in the acceleration signal, as predators 
do not need dynamic chases to capture prey.

The objective of this study is to validate the use of accel-
erometry as a reliable tool to estimate prey-capture rate in a 
deep-diving bird. We first aim to describe the typical prey-
capture acceleration signature at depth, and evaluate whether 
the “visual-interaction hypothesis” complicates detection of 
prey capture as depth increases. We predict that deeper cap-
tures will generate acceleration peaks with a lower ampli-
tude and duration than shallower captures. Second, we aim 
to build a model predicting prey capture using accelerometry 
data as inputs. We chose machine learning algorithms to 
compute our model, as their outputs are typically more accu-
rate than those of linear models—especially when fed with 
a high data volume like that of accelerometry data—and 
hence have been increasingly used to convert accelerometry 
signals into behavioral classification (Brewster et al. 2018; 
Pucci et al. 2020; Sutton et al. 2020). The validation of such 
algorithms requires a gold standard, which can be done in 
deep-diving seabirds using either beak-opening sensors or 
esophageal temperature sensors. We use a unique data set 
that combines a beak-opening sensor and a 1D-accelerom-
eter on the wild king penguins (Aptenodites patagonicus), 
and compare our results with the traditional methods using 
wiggles and other depth-derived variables.

Methods

The data set was collected in February and March 2006 on 
Possession Island, Crozet (46.4°S, 51.8°E), and was used by 
Hanuise et al. (2010) to compare wiggles and a combination 
of two sensors measuring esophageal temperature and beak-
opening amplitude to detect prey captures. While accelera-
tion data was also collected, it was unused in Hanuise et al. 
(2010) study. The ethics committee of the Institut polaire 

français Paul-Émile Victor approved all field procedures. 
All analysis were conducted using R version 4.0.3 (R Core 
Team 2020).

Two brooding king penguins (named E1 and H1) were 
equipped with one SMAD data logger (DEPE-IPHC, 
France) attached externally to their back. The SMAD is a 
TDR equipped with a single axis accelerometer (capturing 
the surge or x axis) and a long and single connector, buried 
under the skin from the back to the corner of the beak. From 
this position, one temperature probe was inserted 10 cm 
depth inside the esophagus, while a Hall sensor was glued 
on the orange tip of the mandible, just in front of a miniatur-
ized magnet, glued on the maxilla. Depth and esophageal 
temperature were continuously recorded at 2 Hz, while beak-
opening amplitude and acceleration were recorded at 16 Hz 
during two daily periods of 1 h starting at 7 AM and 4 PM. 
Only dives with a maximal depth deeper than 40 m were 
considered in our analysis, as shallower dives in king pen-
guins are travelling or exploratory dives not associated with 
foraging and only anecdotally contain prey captures. King 
penguins prey are quasi absent in the 0–70 m depth range 
during the day (Bost et al. 2002). For this reason, shallow 
dives in this species are often removed from foraging analy-
sis (e.g., Hasley et al. 2010; Le Vaillant et al. 2013; Scheffer 
et al. 2016; Tessier and Bost 2020). Indeed, only 0.39% of all 
prey captures in our data set occurred above 40 m.

Because Hall sensors were determined to be the most 
accurate method to detect prey capture in the earlier study 
(Hanuise et al. 2010), we ignore esophageal sensors in this 
study and used prey-capture events recorded by the Hall 
sensors as the gold standard. In any cases, both esophageal 
sensor and Hall sensor provide similar estimations of prey 
capture (Hanuise et al. 2010).

Accelerometry data

Raw acceleration profiles for each dive were filtered twice 
with two different Local Polynomial Regressions using the 
“loess” function available in R. Loess is a nonparametric 
method using locally weighted polynomial regressions 
to fit a smooth curve through datapoints (Cleveland et al. 
1992). The smoothness of the curve is decided by the alpha 
parameters, which controls the size of the sliding widow that 
locally fits the regressions. Alpha = 1.0 means that the slid-
ing widow is as wide as the data (smoother curves), while 
alpha = 0.0 means that the window includes only one point 
at a time (coarser curve).

The first filter was used to remove the pitch signal from 
the 1-D accelerometry data. We, therefore, ran the first Loess 
with a running window of 120 s (alpha ≈ 0.4), determined 
empirically to capture general trends in acceleration due 
to changes in main directional pitch during the dive. We 
ran a second Local Regression with a running window of 
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6 s (alpha ≈ 0.02) to remove wing beat noise, leaving only 
the pitch variation plus medium-scale peaks, assumed to be 
mostly associated with prey captures. The final output was 
obtained by subtracting the 6 s-window regression (pitch 
plus prey-capture acceleration) from the 120  s-window 
regression (pitch only), leaving solely the acceleration peaks 
that we hypothesized were mostly associated with prey cap-
ture (see Fig. S1 for a graphical representation of the two-
filter method).

Once we filtered the acceleration profile, we visually 
scanned a sample of all prey-capture events to determine 
which parameters could be used by the machine learning 
(ML) algorithm to automatically detect prey captures. We 
determined that feeding events caused acceleration peaks, 
either of positive or negative force, of at least ± 0.15 g, with 
varying maximal intensity but rarely over ± 1.2 g. By count-
ing peaks above/below ± 0.15 g, we, therefore, concluded 
that the ML algorithm would detect nearly all capture events. 
However, preliminary analyses also showed that some accel-
eration peaks above/below ± 0.15 g were not related to feed-
ing events, potentially leading to false positive errors by 
the algorithm. Fortunately, these peaks were rarely above/
below ± 0.35 g. We, therefore, used two distinct values to 
feed the algorithm: a conservative threshold, a high value 
that would reduce the amount of false positive but omit 
true positives, and a liberal threshold, that would poten-
tially include all true positives but allow false positives as 
well. To determine the best values for these two thresholds, 
we ran the ML algorithm with all combinations of values 
between ± 0.15 g and ± 0.40 g in incrementation of 0.05 g 
and determined which combination gave the best results. 
The threshold duo of ± 0.15 g and ± 0.30 g were thereby 
determined to be the best combination (see Fig. 1).

Diving data and Hall events

Wiggles are defined as an increase in the depth, followed 
by a decrease and another increase, creating a bump in the 
profile (Schreer et al. 1996; Halsey et al. 2007). We used the 
method for king penguins described in Bost et al. (2007) to 
automatically detect wiggles in our data set, with a minimal 
threshold of 2 m in vertical deviation for depth deviations 
to be considered wiggles. We also calculated the proportion 
of the dive occurring in the bottom phase, which is an index 
of dive shape (Halsey et al. 2007). The bottom of the dive 
was defined as the dive portion occurring below 90% of the 
maximum depth (Bost et al. 2007).

Hall events from beak-opening sensors were classified 
as type A and B using Hanuise et al. (2010). Type A Hall 
events are very short beak opening of less than a second of 
duration and are associated with non-feeding beak opening 
(i.e., unsuccessful attempts). Type B are longer (> 1 s) beak 
opening events associated with prey capture and handling, 

as validated with esophageal temperature sensors (Hanuise 
et al. 2010). Only type B events were considered for analysis 
and will refer to the gold standard of a feeding event, i.e., 
successful feeding attempts.

Machine learning algorithm and linear models

Four neural networks were designed to evaluate the effi-
ciency of accelerometry-derived data compared with depth-
derived data to predict the number of prey capture per dive. 
All neural networks consisted of one layer and ten nodes, 
with Hall events used as gold standard. The first neural net-
work (named “NN1”) used the two accelerometry variables 
(number of peaks above/below ± 0.15 g and ± 0.3 g per dive) 
as inputs. First, 65% of the data set (both birds combined) 
was used to train the algorithm. Then, the algorithm was 
tested on the remaining 35% of the data set. Because our 
sample size of different birds is small (n = 2), we also made 
a different neural network with accelerometry data (NN2) 
which we trained on one bird and tested on the other, so that 
we could further assess inter-individual variability. The third 
and fourth neural networks (NN3 and NN4) used two of the 
most common depth-derived variables as predictors of prey 
captures: number of wiggles and dive-shape per dives. As 
with the accelerometer-derived variables, one model used 
65% to predict the remaining 35% (NN3), while the other 
used one bird as training to predict the other (NN4). Pack-
age neuralnet was used to create neural network models 
(Günther and Fritsch 2010).

We made a fifth model, a linear model labelled “LM1”, 
which only used wiggles as predictors. The linear model 
using wiggles is, to our knowledge, the most widely used 
method in the literature to directly estimate prey capture in 
penguins (e.g., Bost et al. 2007; Zimmer et al. 2011; Hanuise 
et al. 2013; Scheffer et al. 2016; Tessier and Bost 2020). 
The linear model served as the “traditional” method and was 
directly compared with our neural network models using 
standardized metrics (see the next section).

Model validation and statistics

To test whether the “visual-interaction hypothesis” influ-
enced the acceleration signatures, we compared accelera-
tion peaks associated with prey captures below or near the 
euphotic limit (> 150 m) with those in shallower water 
(< 150 m). We used a Student’s t test to assess the difference 
in peak amplitudes (absolute value) and durations between 
those two groups.

To compare capture-rate prediction models, we calcu-
lated the Mean Square Error (hereafter “MSE”) of all five 
models. We also modeled the predicted outputs of the five 
models over the observed values (Hall sensor data) using 
linear models and compared those outputs with the 1:1 
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regression. Finally, we calculated the R2 of each regression 
to evaluate dispersion of the predictions (as done in Bost 
et al. 2007 and Hanuise et al. 2010). Direct comparison 
with two other studies using wiggles as predictors on king 
penguins were possible using the slope, origin and R2 of 
the regressions of the predicted over observed values (Bost 
et al. 2007; Hanuise et al. 2010).

Results

The loggers recorded 206 dives deeper than 40 m. The bird 
labelled E1 recorded 127 dives over 8 days of foraging, 
while H1 recorded 79 dives over 8 days. Mean maximal 
dive depth was 113 ± 34 m (range: 40–219 m). The aver-
age number of Hall events B in a dive was 3.70 ± 6.92 
(range: 0–46), while the average number of wiggles was 
0.95 ± 1.23 (range: 0–7). Acceleration peaks associated 
with prey captures were on average 0.78 ± 0.31 g in maxi-
mum amplitude and 3.9 ± 3.5 s in total duration. There was 
no significant difference between the maximum intensity 
of peaks occurring below 150 m and those occurring above 
150 m (t176 =  − 0.33, p = 0.74), but acceleration peaks 
occurring above 150 m were shorter in duration compared 
to deeper peaks (above: 3.8 s ± 3.4, below: 4.8 s ± 4.2, 
t170 = -2.96, p = 0.004).

Using the ± 0.3 g or the ± 0.15 g threshold, the number 
of accelerometry peaks in a dive was highly correlated 
with the number of Hall events-B (Fig. 2). As expected, 
the number of peaks beyond ± 0.3  g slightly underes-
timated the number of Hall events, while the ± 0.15 g 
threshold slightly overestimated the number of Hall events.

Models with accelerometry-derived variables (NN1 and 
NN2) scored significantly better than those with depth-
derived variables (NN3 and NN4) in all metrics (Table 1, 
Fig. 3). For models NN2 and NN4, bird H1 was used as 
the training data set, as the number of dives performed was 
comparable to the sample size of the training data set for 
model NN1 and NN3 (127 dives for NN2/NN4, 132 for 
NN1/NN3). The two models which used accelerometry-
derived data had similar accuracy (Δ4.5 in MSE, Δ0.12 
in R2). In contrast, the difference between depth-derived 
models NN3 and NN4 was much greater (Δ25.4 in MSE, 
Δ0.24 in R2).

The traditional approach, with a linear model using 
only the number of wiggles as predictor, did poorly 
compared to most neural network models (MSE = 32.4, 
slope = 0.32 ± 0.06, intercept = 2.5 ± 0.50, R2 = 0.32, see 
Fig. 4). Nonetheless, the R2 (0.32) was similar to other 
studies that used similar methods (Bost et al. 2007: 0.26, 
Hanuise et al. 2010: 0.39).

Discussion

Prey captures at depth in the king penguin produced dis-
cernable acceleration signatures of considerable intensity 
and length. Furthermore, neural networks using accelera-
tion inputs accurately predicted the number of prey-capture 
events in a dive. These results add to the growing number 
of studies showing the benefits of using accelerometry to 
predict prey capture (e.g., Gallon et al. 2013, Kokobun et al. 
2011, Watanabe and Takahashi 2013, Watanabe et al. 2014, 
Sato et al. 2015, Volpov et al. 2015, Carroll et al. 2018, 
Yoshino et al. 2020, Adachi et al. 2021), and provides one 
of the first validations for deep-diving species. Our models 
were significantly more accurate than the previous studies 
using depth-derived variables on king penguins.

Fig. 2  Number of acceleration peaks in a king penguin dive relative 
to the number of Hall events (dotted line) compared to the 1:1 line 
(solid line). The 0.15  g threshold (top panel) slightly overestimates 
the number of captures, while the 0.3  g threshold (bottom panel) 
underestimates the number of captures over most of the regression. 
Darker data points show overlapping values
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Table 1  Model outputs predicting prey captures (Hall sensor data) using either acceleration-derived or depth-derived data

Validation variables are calculated on the prediction ~ observation relationship

Model Variable Training dataset Validation dataset Slope Intercept R2 Mean 
Square 
error

Graph

Neural Network 1 Accelerometry 
derivaed

65% of dataset 
(n = 132)

35% of dataset 
(n = 72)

0.88 ± 0.12 0.6 ± 0.8 0.79 8.6 Figure 2

Neural Network 2 Accelerometry 
derivaed

Bird E1 (n = 127 
dives)

Bird H1 (n = 79 
dives)

0.96 ± 0.15 1.0 ± 1.0 0.67 13.1 Figure 3a

Neural Network 3 Depth-derived 65% of dataset 
(n = 132)

35% of dataset 
(n = 72)

0.51 ± 0.11 1.8 ± 0.8 0.52 16.0 Figure 2b

Neural Network 4 Depth-derived Bird E1 (n = 127 
dives)

35% of dataset 
(n = 79 dives)

0.75 ± 0.24 3.6 ± 1.5 0.28 41.4 Figure 3b

Linear Model 1 Wiggle Whole dataset Whole dataset This study: 
0.32 ± 0.6

Bost et al. 
2007:0.45

Hanuise 
et al. 
2010: 0.8

This study: 
2.5 ± 0.5

Bost et al. 
2007:1.77

Hanuise 
et al. 
2010: 1.82

This study: 
0.32

Bost et al. 
2007:0.26

Hanuise 
et al. 
2010: 0.39

32.3 Figure 4

Fig. 3  Predicted relative to observed prey-capture rates for king pen-
guins from all four neural network models (dotted lines) compared 
to the 1:1 line (solid lines). Models NN1 and NN2 used accelerom-
etryderived variables as predictors, while models NN3 and NN4 used 

depth-derived variables. Models NN1 and NN3 were trained and vali-
dated with data from both birds combined, while models NN2 and 
NN4 trained with one bird and validated with another. Darker data 
points show overlapping values
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Acceleration signature of prey captures

The “visual-interaction hypothesis” stipulates that, at depth, 
the escape behavior of fish is less effective, as predator–prey 
detection occurs so close that evasion is futile (Childress 
et al. 1990; Drazen and Seibel 2007). This, combined with 
a lower water temperature at depth, leads fish such as myc-
tophids to reduce their metabolism when in deeper, dark 
waters (Drazen and Seibel 2007; Catul et al. 2011). In con-
trast, fish well above the euphotic zone have high metabo-
lism to accommodate a more explosive escape response. 
King penguins feed on mesopelagic myctophids near or 
below the euphotic zone and exclusively use vision to detect 
their prey (Martin 1999; Bost et al. 2002; Cherel et al. 2007). 
It was, therefore, expected that the acceleration needed to 
pursue and capture prey would not contrast well with the 
acceleration noise of regular underwater movements. This 
was not the case, as the filtered acceleration peaks associated 
with prey capture was discernable (0.78 g in average) and 
total pursuit and capture time lasted several seconds (3.9 s in 
average). This is comparable to similar-size seabirds diving 
closer to the surface: the surge acceleration of Magellanic 
penguins Spheniscus magellanicus when capturing school-
ing fish averaged 0.31–0.64 g in maximum amplitude, while 
the optimal tri-axial acceleration thresholds for detecting 
fish captures in Adelie penguins Pygoscelis adeliae were 
0.25–0.45 g, similar to our 0.15 g and 0.30 g thresholds for 
surge acceleration (Watanabe and Takahashi 2013; Del caño 
et al. 2021). Both of these penguins feed on fish in shal-
low waters above 50 m. Similarly, prey chase and capture 
in the little penguin Eudyptula minor averages 2.9 ± 3.3 s, 
which is quite similar to our results (Ropert-Coudert et al. 

2006). Obviously, the prey-capture acceleration signature 
associated with different predator species depends on much 
more than solely the depths at which they forage. Predator 
and prey size, diving speed and foraging tactics are all fac-
tors that could influence the prey-capture signatures. Further 
study is needed to assess whether, with a larger species sam-
ple size, deeper species will tend to display fainter accelera-
tion signatures compared to shallow-diving species.

Another unexpected result was the significant differ-
ence between the duration of prey captures occurring above 
and below 150 m, with shallower captures taking less time 
than deeper captures. The opposite result was anticipated 
by the visual-interaction hypothesis assuming that darkness 
reduces chasing initiation distance. However, king penguins 
may opportunely feed on smaller fish larvae and/or plank-
ton when diving in shallow water. These prey types, which 
are more abundant near the surface, might not require great 
acceleration to be captured. On the other hand, larger fish 
near the euphotic zone targeted by the penguin might be 
more mobile, especially considering that these fish initiate 
vertical migration at night. Even in poor light conditions, the 
prey might require considerable acceleration to be captured 
compared to fish larvae and plankton in shallow waters. Fur-
ther study is needed to validate this idea.

Advantage of accelerometry data to estimate 
feeding activity

Accelerometers provide one of the most convenient and 
accurate methods to estimate prey capture (Watanabe & 
Takahashi 2013; Volpov et al. 2015; Del Caño et al. 2021). 
They are small and can be deployed with relative ease, while 
their low power consumption allows for extensive data 
recording. However, validation of accelerometry requires a 
gold standard, which is often easier obtained using camera-
loggers. Hence, most validations of accelerometry on wild 
animals have been conducted on shallow divers feeding in 
the euphotic zone (e.g., pygoscelid penguins: Watanabe et al. 
2014, fur seals: Volpov et al. 2015, Del magellanic penguin: 
Caño et al. 2021).

While deep-divers feeding on mesopelagic fish are a 
crucial key to understand food-chain mechanisms in the 
open-ocean, the use of accelerometry to quantify foraging 
success is recent in these species (Watanabe et al. 2020; 
Yoshino et al. 2020; Adachi et al. 2021). Furthermore, true 
validation with a gold-standard is very rare: Watanabe et al. 
(2020) showed that the number of accelerometry peaks was 
highly correlated with the number of video-confirmed feed-
ing events in a deep-diving pinniped. Yet again, the heavy 
camera-loggers used in their study would exceed 3% of body 
mass ethical guidelines to equip on deep-diving birds, such 
as Uria alcids and Aptenodytes penguins. For this reason, 
foraging activity and success on these species have been 

Fig. 4  Predicted relative to observed prey-capture rates for king pen-
guins (dotted line) compared to the 1:1 line (solid line) for the tra-
ditional linear model using the number of wiggles in a dive as the 
explanatory variable. Darker data points show overlapping values
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almost exclusively determined using depth-derived vari-
ables (Kirkwood and Robertson 1997; Zimmer et al. 2011; 
Hanuise et al. 2013; Scheffer et al. 2016; Orgeret et al. 2019; 
Tessier and Bost 2020). Accelerometry provides a more 
accurate alternative: our results show that accelerometry 
greatly outperforms wiggles in quantifying foraging success. 
Even foraging activity cannot be determined accurately with 
depth-derived variables, as many deep-dives—some even 
containing wiggles—were not associated with prey captures 
in our study (see Fig. 4). Therefore, identification of foraging 
dives cannot be made reliably with depth-derived variables, 
such as wiggles. By combining a conservative acceleration 
threshold at ± 0.3 g with a more liberal one at ± 0.15 g, we 
were able to obtain accurate machine-learning models for 
the king penguin that surpassed the wiggle method.

Limitations and next step

While neural networks are superior than linear models at 
making accurate predictions, they are usually more so with 
very large sample sizes and many input variables (Bonac-
corso 2017). Our sample size was moderate in size and only 
two variables were used as inputs. Ideally, a larger sample 
size would likely increase the accuracy of the algorithm, 
fully taking advantage of the ML method. Data on more 
individuals is necessary for better testing of the inter-indi-
vidual variability.

One limitation of our method is the pre-determination of 
the acceleration thresholds to identify acceleration peaks. 
These thresholds likely differ from one species to another. 
Repeating the experiment for each species would provide 
accurate estimates of prey-capture rate, but would be unre-
alistic considering the difficulty of obtaining gold standard 
data. Depth-derived variables also suffer from the same 
flaws and need species-specific validations; the minimum 
deviation for a change in the depth profile to be considered a 
wiggle is species-specific (Hasley et al. 2007). Nonetheless, 
these values are often easy to determine without validation 
by simply looking at trends in the depth-profile data (e.g., 
Zimmer et al. 2011; Crossin et al. 2012). The same logic can 
be used with accelerometry data without validation to specu-
late on which accelerometry signatures are associated with 
feeding events (e.g., Naito et al. 2010). Still, we encourage 
similar methods to be tested on more deep-diving species, 
avian or not, to assess variation among taxa.

Conclusion

Despite a small sample size, this study confirmed the poten-
tial of accelerometry as an input to neural network models 
to predict prey-capture rates in a deep-diving seabird, using 
Hall sensor data as validation. We concur with other studies 

on shallow-diving species that accelerometry outperforms 
depth-derived variables at detecting and quantifying prey 
capture, and provide one of the very few validation on a 
deep-diving animal.
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