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Allee effects driven by predation can play a strong role in the decline of small

populations but are conventionally thought to occur when generalist preda-

tors target specific prey (i.e. type II functional response). However, aside

from direct consumption, fear of predators could also increase vigilance and

reduce time spent foraging as population size decreases, as has been observed

in wild mammals living in social groups. To investigate the role of fear on

fitness in relation to population density in a species with limited sociality,

we exposed varying densities of Drosophila melanogaster to mantid predators

either during an experimental breeding season or non-breeding season. The

presence of mantids in either season decreased the reproductive performance

of individuals but only at low breeding densities, providing evidence for an

Allee effect. We then used our experimental results to parametrize a math-

ematical model to examine the population consequences of fear at low

densities. Fear tended to destabilize population dynamics and increase the

risk of extinction up to sevenfold. Our study provides unique experimental

evidence that the indirect effects of the presence of predators can cause

an Allee effect and has important consequences for our understanding of

the dynamics of small populations.
1. Introduction
Given that many populations show strong negative density-dependence, animal

extinction is somewhat paradoxical because individuals from depressed popu-

lations should have high fitness. Allee effects, or positive density-dependence,

are phenomena that lead to positive relationships between population density

and individual fitness and, therefore, can play an important role in driving

small animal populations to extinction [1]. Classic examples of Allee effects

have focused on intrinsic limitations at small population size, such as inbreeding

depression and genetic bottlenecks, demographic stochasticity, environmental

conditioning of habitat, cooperative foraging and mate limitation [2–6]. Although

predators are often involved in animal extinctions, predation’s role in creating

Allee effects can be limited because population size (i.e. numerical response) of

specialist predators should decline as prey population size declines while general-

ist predators may develop alternative search images and switch to other prey,

with both phenomena leading to negative density-dependence of the prey [2].

Exceptions often involve specific conditions, such as social mammals or type II

functional responses in unstructured habitats [7–11].

Whereas textbook summaries of the effect of predation focus on direct

consumption of prey by predators, there is growing evidence that the fear of pre-

dators can be as important as direct consumption. When animals fear predators,

they often spend more time being vigilant, less time foraging and less time in

higher food-quality, but riskier, habitats [12–15]. Such behavioural responses to

fear can lead to stress-related physiological changes and have a negative impact

on body condition [16–18], which can then influence both reproductive success

and survival [19–21], eventually influencing long-term population dynamics

[22,23], and even ecosystem function [14,19,24,25]. The impacts of fear can also

be transgenerational due to maternal effects impacting offspring development
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Figure 1. (a) Per capita fecundity and (b) female offspring mass as a function
of breeding density (total population of males and females) following treat-
ment without mantid scent (control, red), mantid scent during the breeding
season (grey) or mantid scent during the non-breeding season (black). Treat-
ments sharing the same letter were not statistically different from one
another. (Online version in colour.)
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[18,26–28]. Indeed, averaged across many studies, the popu-

lation-level effect of fear on prey fitness can be equivalent to

the effect of direct predator consumption [22].

Fear of predators could heighten Allee effects because

individuals are more vigilant as density declines. Field studies

of social mammals have shown that individual vigilance

increases as group size declines, and that smaller groups are

more likely to go extinct due to predation [29,30]. However,

such an effect may not be limited to social mammals if fear

compensates for negative density-dependence. For instance,

if lower densities lead to fewer social interactions, then vigi-

lance arising from fear of predators may become more

important by resulting in de facto reduced densities with

respect to social interactions. Thus, fear could create an Allee

effect that increases the risk of extinction, and also potentially

destabilizes dynamics, by decreasing the ability of populations

to rebound through negative density-dependent processes.

To experimentally examine the effect of density on the fear

response, we exposed Drosophila to the scent of a mantid

predator either in a simulated breeding season, a simulated

non-breeding season or neither, and then examined fecundity

and offspring body mass at four different densities. Fear

responses are typically multimodal, and the effect of fear

from the mantid is likely due to a combination of vibrations

and scent from the mantid, and the scent of dead flies defecated

by the mantid. Previously, we demonstrated that exposing Dro-
sophila to a mantid predator in the non-breeding season

reduced fecundity the following breeding season and that

mantid exposure in the breeding season caused offspring to

develop faster and weigh less as adults, presumably because

stressed mothers influenced offspring development [18].

Thus, the effects of fear in the non-breeding season carried

over to impact fecundity the following breeding season and

the effects of fear during development carried over to impact

adult body mass. To understand the effect of density on fear

responses, we examined the two endpoints highlighted by our

previous study: fecundity and offspring body mass. We pre-

dicted that the carry-over effect response of fear on both

fecundity and offspring body mass would be higher at smaller

population sizes because individuals spend more time being

vigilant. Given that the population parameters for our study

population have previously been quantified in detail [31,32],

we then modelled the impact of these effects on population

stability and persistence.
2. Material and methods
Many animals have distinct stages in their annual cycle (seasons)

that correspond with environmental variation, principally food

availability. Here, we consider a system with two seasons defined

by whether an animal is breeding or not breeding ([31,32]; see elec-

tronic supplementary material, Detailed Methods, figure S1),

although the principles could be extended to more complex sea-

sonality. Our system mimics several key elements of seasonality

in the wild: (i) the breeding season is shorter than the non-breeding

season; (ii) flies are not food-restricted during the non-breeding

season at most densities, but females have no source of protein

and no laying medium, and therefore do not lay eggs; and

(iii) fecundity declines with time during the breeding season

because late-laid eggs have low survival [18,33].

We used Chinese praying mantids, Tenodera aridifolia sinensis
(hereafter ‘mantids’) as predators. Previous work showed that

mantids can cause strong fear responses in the wild, with
herbivorous prey emigrating from areas that mantids are intro-

duced [25,34]. We tested Drosophila with single first instar

mantids that had been feeding on adult Drosophila for their entire

lives prior to the start of the experiment. To control for age and

body mass, we only used individual adult Drosophila between 1-

and 3-days old from parents bred at low density. To obtain these

offspring, we selected males and females and placed 16 individuals

(50 : 50 sex ratio) in separate vials with fresh food for 24 h. We used

only individuals that emerged between days 10 and 12 post-lay.

We then combined these offspring and randomly grouped equal

ratios of males and females into one of three ‘predator’ treatments:

‘control’ with no mantid, ‘non-breeding mantid’ with mantid pre-

sent but not visible during the non-breeding season and ‘breeding

mantid’ with mantid scent impregnated for 24 h prior to measure-

ments. For each ‘predator’ treatment, we had four ‘density’

treatments (n ¼ 15 replicates at each density and ‘predator’

treatment): 4, 16, 80 and 160 individuals (50 : 50 sex ratio).

All treatments began at the start of the non-breeding season

and finished at the end of the breeding season, which we labelled

as day 0. After 4 days in the non-breeding season, we moved the

survivors to the breeding season, but controlled density (so that

there was the same density in the breeding season and non-

breeding season even though some individuals died during the

non-breeding season), by combining all survivors from each

treatment at the end of the non-breeding period and then

placed the same density of flies (50 : 50 sex ratio) as was present

in the non-breeding season in each breeding vial (n ¼ 9–14 repli-

cates at each density and ‘predator’ treatment during the

breeding season).
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To investigate the effects of the ‘predator’ treatment and den-

sity on reproductive output, we counted the total number of

offspring emerged, which we termed ‘fecundity’. Given that over

90% of eggs hatch, the number of offspring emerged is very simi-

lar, and highly correlated with, the number of eggs laid [18]. We

also measured ‘female offspring mass’, which was the average

mass of female offspring on the day juvenile flies emerged.

(a) Population model
To explore the population-level consequences of fear, we used a bi-

seasonal population model constructed and validated by Betini

et al. [31] on the same lines of flies we used in this study. The

model describes the population-level responses within our seaso-

nal experimental system via a bi-seasonal Ricker model. The

population size at the end of the breeding season, Xt, for generation

t is given by

Xt ¼ Yt�1eðrmaxþcXt�1Þð1�ðYt�1=KbÞÞ

and the population size at the end of the non-breeding season, Yt, is

given by:

Yt ¼ Xte
rnbð1þðXt=KnbÞÞ,

where rmax is the maximum intrinsic rate of growth in the breeding

season, c a coefficient representing the carry-over effect associated

with breeding density, Kb the carrying capacity in the breeding

season, rnb the intrinsic rate of growth in the non-breeding

season and Knb the carrying capacity in the non-breeding season.

To construct the model, we assumed that the effect of reduced

fecundity associated with fear in the non-breeding season would

cause a proportional increase in c and decrease in rmax (reduced off-

spring size; [18]), while the effect of reduced development time

associated with fear in the breeding season was a proportional

decrease in rmax (reduced offspring size; [18]).

We present the results from 10 000 simulations with

random noise multiplied to the same population models (sex

ratio of 50 : 50) during both the breeding and non-breeding seasons
(2s ¼+80%, but with survival during non-breeding constrained

not to be greater than 1) such that population size at the end of

the non-breeding season and breeding season had a stochastic

component. If the population dropped below one individual,

then the population was considered extinct.

(b) Statistical analysis
To compare fecundity and development time among ‘predator’

treatments, densities and their interactions, we used general

linear models. All analyses were conducted in R. v. 3.2.0 with

statistical significance set at a ¼ 0.05.
3. Results
Fecundity varied with ‘predator’ treatment (general linear

model: F2,139 ¼ 7.6, p ¼ 0.0005), density (F1,139 ¼ 344, p ,

0.00001) and the interaction between ‘predator’ treatment

and density (F2,139 ¼ 3.85, p ¼ 0.02). Thus, fecundity declined

with density and was lower in the non-breeding mantid treat-

ment, but the effect of the non-breeding mantid treatment

was only apparent at low densities (figure 1). Female off-

spring body mass varied with ‘predator’ treatment (F2,139 ¼

7.51, p ¼ 0.0008), density (F1,139 ¼ 31.4, p , 0.00001) and

the interaction between ‘predator’ treatment and density

(F2,139 ¼ 5.58, p ¼ 0.005). Thus, female offspring body mass

declined with density and was lower in both experimental

‘predator’ treatments, but the effect of both ‘predator’ treat-

ments was only apparent at low densities (figure 1).

A relative Allee effect was present in both traits, with the

impact of fear being greater at low densities, and trait levels

declining or remaining stable at low densities compared

with moderate densities.

Population models incorporating the effect of fear were less

stable than models that did not incorporate fear (figure 2).
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Specifically, seasonal populations became unstable at an intrin-

sic rate of growth of about 3.6 when fear was incorporated into

the model compared with 4.2 when fear was not incorporated.

By contrast, seasonal populations with no carry-over effect or

fear became unstable at an intrinsic rate of growth of 3.2. The

probability of extinction decreased with carrying capacity

and initial population size (figure 3). The probability of extinc-

tion at low carrying capacities and initial population sizes was

higher for populations with fear than without fear (figure 3).

The probability of extinction for an initial population size of 4

and a carrying capacity of 10 was approximately 48% with

fear and approximately 33% without fear. By contrast, the

probability of extinction for an initial population size of 20

and a carrying capacity of 60 was approximately 0.15% with

fear and approximately 0.02% without fear. Thus, although

the absolute difference in the probability of extinction with

fear was highest at low initial population size and carrying

capacity, the relative difference was highest at higher initial

population sizes and carrying capacities (figure 3b).
4. Discussion
As we predicted, the effect of fear on fecundity and offspring

growth was most pronounced at low densities. At low
densities, as previously shown [18], the scent of a mantid

during the non-breeding season caused female flies to breed

in poor condition, and lay fewer eggs that grew into smaller

flies, while the scent of a mantid during the breeding season

caused female flies to lay eggs that developed into smaller

flies. At high densities, flies apparently did not experience

the impact of fear either because flies were already at maximal

levels of stress or because they spent less time being vigilant in

the presence of many conspecifics. Regardless of the proximate

mechanism, fear partly compensated for the effect of negative

density-dependence creating a demographic Allee effect.

Our experimental system clearly demonstrated an Allee

effect similar to those reported to occur in field studies of

social mammals. For instance, lamb survival in bighorn

sheep (Ovis canadensis) is positively correlated with popu-

lation density because larger herds can better protect their

offspring, but there is no overall relationship between popu-

lation density and growth because of other confounding

variables in the wild [35]. Mortality is higher in small suricate

(Suricata suricatta) groups than large groups, but only in areas

of high predation and, in those areas, all small suricate

groups eventually go extinct [28]. Similarly, field studies

have documented Allee effects associated with type II func-

tional responses [7,36]. For example, predators overwhelm

defences in small bird colonies [37], small native animal popu-

lations are eliminated by generalist, introduced predators

[38,39] and fish stocks are diminished as commercial fisheries

concentrate their resources on dwindling populations [40,41].

Finally, complex interactions among multiple prey have led

to Allee effects in caribou [42]. Our study extends these

earlier studies to provide clear experimental evidence that

predators can create Allee effects beyond the narrow situa-

tions previously envisioned involving type II predation in

unstructured habitats or social mammals [7–12,43].

Other studies demonstrated Allee effects in Drosophila
based on factors intrinsic to the population rather than the

effect of predators [44,45]. At low population size, aggrega-

tive pheromone levels, and consequently oviposition rates,

by females are reduced [45]. The lower consequent larval

densities are unable to temper fungal growth leading to

reduced larvae survival [44]. Our work extends those ideas

to systems that include predators and seasonality.

Fear tended to destabilize populations by decreasing the

ability of small populations to rebound via negative density

dependence. Indeed, the probability of extinction was higher

for populations in the presence of fear than without fear. By

contrast, density-mediated carry-over effects, which have

been reported in the same experimental seasonal population

used in this study, tended to stabilize populations [31]. Thus,

one might expect that fear would increase population stability

due to the enhanced carry-over effects from non-breeding to

breeding and from mother to offspring. Indeed, even with

fear, population stability was higher with carry-over effects

than without carry-over effects. However, because those effects

were only pronounced at low densities, leading to lower

fecundity and population growth, the net effect of fear was to

destabilize populations.

Our work may have direct practical implications. Invasive

arthropod generalist predators, such as Chinese praying man-

tids, have disrupted many ecosystems worldwide, although

their effects are often difficult to predict [46]. Indeed, arthropod

generalist predators often exert strong top-down control on

prey populations, primarily via fear rather than direct
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predation, and often leading to trophic cascades [25,46–48].

Mantids are known to increase fear in prey populations,

leading them to emigrate from areas with high mantid den-

sities [25,34], and our work suggests that prey species with

lowest densities may be most impacted. We suggest that the

destabilizing and Allee effects associated with fear of those

predators may be one reason why their impacts are unpredict-

able. Although our mantids only ate Drosophila, because we

maintained a constant mantid density rather than presenting

a numerical response typical of a specialist predator, our results

may be more typical of a generalist predator whose abundance

is maintained high by alternative prey even as one prey

species declines.

The likelihood of extinction was highest in our seasonal

experiments for small initial population size and small carry-

ing capacities, which is unsurprising, given that many past

extinctions have occurred when population size has been

reduced (e.g. overhunting) or carrying capacity is inherently

low (e.g. island species) [43]. We clearly show that reductions

in carrying capacity (e.g. habitat loss) can leave populations

vulnerable to stochastic events (e.g. climatic variability) that

reduce population size, but that those effects are exacerbated

in the presence of fear. Interestingly, the relative impact of

fear was largest at relatively larger population sizes and car-

rying capacities because fear reduced the ability of density

dependence to rescue those populations during crashes

(figure 3). As such, fear is yet another example of multiple,
likely interacting, Allee effects that complicate population

management [43,49].

Predators have caused the extinction of many wild animals

and fear-associated Allee effects may have played a role in

those extinctions [2,43,50]. In particular, fear is known to be

associated with population declines in many wild systems.

For instance, increasing populations of birds of prey have led

to declines in waterbird populations primarily by causing

waterbirds to reduce time spent foraging or abandon their off-

spring en masse, which are then eaten by other birds [51,52].

We suggest that such fear effects may become more pro-

nounced as population size declines, as observed by Gilchrist

[37], leading to reduced resilience in small populations and

increased likelihood of extinction.
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