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1  |  INTRODUC TION

Unoccupied aerial vehicles (UAVs or drones) are becoming valu-
able tools in ecological research, as they offer a safer, cheaper and 
quieter alternative to large aircraft and may be more accurate than 
conventional methods (Hodgson et al., 2018; Scholten et al., 2019). 
Additionally, the increasing clarity of airspace regulations on UAV 
activity in many regions has lifted restrictions and simplified UAV 

use for wildlife science (Chabot & Bird, 2015; Gonzalez et al., 2016). 
However, wildlife has had adverse reactions to UAV presence 
(Broset, 2018; Chabot & Bird, 2015; Mulero-Pázmány et al., 2017). 
Although several studies observed little to no obvious behavioural 
response to UAV flight (Broset, 2018; Christie et al., 2016; Mulero-
Pázmány et al., 2014), others have documented strong behavioural 
responses (Brisson-Curadeau et al., 2017; Weimerskirch et al., 2018) 
or physiological stress responses (Ditmer et al.,  2015), and the 
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Abstract
1.	 Advances in operational simplicity and cost efficiency have promoted the rapid 

integration of unoccupied aerial vehicles (UAVs) into ecological research, yet 
UAVs often disturb wildlife, potentially biasing measurements. Studies of UAV 
effects on wildlife to date have focused on UAV trajectory or distance; however, 
UAV size and noise could be critical variables influencing wildlife responses.

2.	 Bats are cryptic aerial species that are difficult to survey using conventional 
means, and so we tested the effectiveness of drone-based acoustic surveys for 
bats. We recorded the number of acoustic bat detections with and without a 
UAV present. We used three small, commercial rotary UAVs varying in size and 
noise intensity (249, 907, 1,380 g).

3.	 Larger and louder UAVs deterred significantly more bats, with no effect of 
take-off distance on bat activity. The smallest and quietest UAV model had 
a similar change in bat activity compared with control measurements. Drone 
noise increased with drone size, but all drones emitted in a similar range of fre-
quencies that overlapped with the larger bat species that were also those most 
impacted by the UAV. During the 5-minute surveys, there was no evidence of 
bat habituation to UAVs although bats returned quickly once the UAV survey 
ended.

4.	 We urge wildlife researchers to consider drone size during wildlife surveys. 
Smaller and quieter models have negligible impacts on wildlife, eliminating the 
impact of drones on wildlife in some cases.
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response of many animal groups remains inadequately tested. Thus, 
although UAVs provide the potential to survey elusive wildlife (e.g. 
bats), guidelines for reducing impacts on wildlife are needed.

Many studies have shown that how a UAV is flown (i.e. distance 
to wildlife, flight direction, take-off distance, flight pattern) can 
impact wildlife reactions (Brisson-Curadeau et al., 2017; Chabot & 
Bird,  2015; Duporge et al.,  2021; Hodgson & Koh,  2016; Mulero-
Pázmány et al.,  2017; Vas et al.,  2015). Fewer have described 
how wildlife responses can vary with UAV type, including one re-
view demonstrating that larger UAVs cause animals to react from 
greater distances than smaller UAVs (Mulero-Pázmány et al., 2017). 
The choice of UAV type for wildlife research is a critical decision 
considering that the UAV rotary models available differ widely in 
power source, dimension, cost, flight parameters and battery life. 
UAVs also emit variable ultrasonic frequencies, ranging from 4 to 
45  kHz (Broset,  2018; August & Moore,  2019; Jokisch & Fischer, 
2019). UAVs emit higher frequency signals when climbing and lower 
frequencies when shifting positions relative to hovering (Jokisch 
& Fischer, 2019). Finally, UAVs increase environmental noise 
by about 15  dB with larger and heavier UAVs being louder than 
small UAVs (Broset, 2018; Christie et al., 2016; Farlik et al., 2019; 
Miljković, 2018). If UAV noise and size impacts wildlife behaviour, 
then the use of smaller UAVs could be an important best practice for 
drone-based wildlife surveys.

Due to bats' ability to echolocate, acoustic detectors are pop-
ular tools for bat detection, leading to important advancements in 
monitoring bat activity and estimating their abundance (August & 
Moore,  2019; Kloepper et al.,  2016; Kunz et al.,  2009). Bat acous-
tic detectors record the ultrasound calls emitted by bats, which can 
be used in combination with bat identification software to depict 
frequency range and call shape on a spectrogram. These detectors 
are non-invasive, with some capable of continuously recording and 
saving large volumes of data in nearly every environment and con-
dition (Adams et al.,  2012; Broset,  2018; Skalak et al.,  2012). The 
range of acoustic detection varies with the model of detector, param-
eters of the detector, bat species and weather (Adams et al., 2012; 
Goerlitz, 2018). To decrease bias in detection, detectors have been 
elevated to altitudes, such as over the forest canopy, with masts, bal-
loons, kites, pulleys and towers (August & Moore, 2019; Froidevaux 
et al., 2014; Plank et al., 2012). Even with these methods, acoustic 
detection is still restricted by altitude, direction and control in the air.

To facilitate mobile aerial data collection, some studies have 
demonstrated success with acoustically recording bats from rotary 
UAVs that can be flown to high altitudes and to hard-to-access lo-
cations (Broset,  2018; Fu et al.,  2018; Kloepper & Kinniry,  2018). 
Despite these advantages, UAVs may not be suitable for recording 
bat echolocation calls because their noise overlaps with the frequen-
cies of bat calls, specifically low-frequency bat calls (Broset, 2018; Fu 
et al., 2018; Kloepper & Kinniry, 2018). For example, attempts to use 
UAVs to record bird song has led to variable detection rates (Wilson 
et al.,  2017). While some bat species may be under-represented 
based on the frequency range of their calls, the duration of the sur-
vey also affects results, as surveys that are too short miss some rare 

bat species (Skalak et al., 2012). Thus, the limited battery life of some 
drones (especially larger drones) should be considered, to prevent 
bias against rare species in drone-based acoustic bat monitoring—
although the ability of a drone to survey the entire air column and 
inaccessible sites may also increase detection rates of rare species. 
Additionally, since noisy environments decrease bat foraging effi-
ciency (Allen et al., 2021), the noise from drones may disturb bats. 
Ednie et al. (2021) tested a small, commercial quadcopter and found 
that bat activity was much lower and variable in the presence of a 
drone. As ultrasound generated by bat frequencies was easily de-
tected by the bat recorder even in the presence of a drone, the lower 
detection of bat activity likely represented avoidance by bats of the 
area when the drone was present (Ednie et al., 2021). If drone pres-
ence alters detection rates variably, then this technology cannot be 
used to reliably survey bats (Ednie et al., 2021).

Here, we investigate whether UAV size impacts bat activity. We 
hypothesized that if UAV flight deters bats due to the sound and dis-
turbance, then activity will decrease when flying louder and larger 
UAVs. Also, if launching UAVs is the loudest period of flight, then 
bat activity is predicted to be higher when a farther launch site is 
used. Next, we (a) analyse how different bat species are affected 
by drone, and (b) examine the effects of drone LED lights on bats. 
Finally, we examine if and how quickly bats habituate to the pres-
ence of a UAV, and how quickly they respond post-trial. We aim to 
determine UAV specifications most conducive to bat research and 
select a small, commercial UAV that could be used to survey bats 
with a basic drone licence.

2  |  MATERIAL S AND METHODS

2.1  |  Field site

We conducted the study at The Kenauk Institute nature reserve 
in Montebello, Québec, Canada between 10 June and 12 August 
2020. We were invited by the Kenauk Research Institute to conduct 
fieldwork without the need for a permit. All eight bat species na-
tive to Québec have been previously identified on Kenauk property 
(Ednie et al., 2021): the hoary bat Lasiurus cinereus, silver-haired bat 
Lasionycteris noctivagans, big brown bat Eptesicus fuscus, Eastern 
red bat Lasiurus borealis, tri-coloured bat Perimyotis subflavus, little 
brown myotis Myotis lucifugus, northern long-eared myotis Myotis 
septentrionalis and eastern small-footed myotis Myotis leibii. We 
chose eight sites that were near water where insects are prevalent 
or near structures that could act as roosts in open or semi-open hab-
itats (Supporting Information 1), as these qualities provide suitable 
bat habitat.

2.2  |  Drone model and launch method

We selected three off-the-shelf quadcopters to conduct the tri-
als: the DJI Phantom 4, DJI Mavic 2 Pro and DJI Mavic Mini (DJI, 
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Shenzhen, China). For the trials, we launched each drone model 
using two launch distances: (a) at the site of detection and (b) 50 m 
from the site of detection, resulting in six treatments. The selected 
drones varied in weight, dimension and cost, as well as noise level 
and frequency range (Table  1). To determine which drones were 
the loudest and which may overlap with bat calls, we acoustically 
profiled the drones by recording flight in the same environment. 
Acoustic profiling was done with a smartphone using the Decibel 
X (SkyPaw Co. Ltd, Hanoi, Vietnam) application where frequency 
of the drones (Hz) was measured as well as noise intensity (dBFS) 
over time of drone flight. The acoustic profiling revealed potential 
overlap the drones may have with the two lowest frequency calling 
bats (Figure 1).

2.3  |  Data collection

We performed trials starting 30  min after dusk from 21:00  h to 
0:00  h, following the procedure described by Ednie et al.  (2021). 
Trials consisted of three phases where we acoustically recorded bat 
activity before, during and after drone treatment. We measured bat 
activity with the number of bat passes per trial, with more frequent 
bat passes indicating higher bat activity. Treatment (which drone 
was flown and with which launch method) was randomly assigned. 
At each site, we placed a control detector 250–400 m away from 
the treatment, enough distance to attenuate drone noise but remain 
in similar habitat. Drones were only flown in suitable weather con-
ditions (nights with winds below 20  km/h and no precipitation or 
frost). All flights involved two operators: a pilot and an acoustic re-
corder operator.

Upon arriving to one of our eight detection sites, we began the 
first phase of the trial by attaching the Echo Meter Touch 2 plugin 
acoustic bat detector (Wildlife Acoustics) to a tablet and initiating 
recording with the corresponding Wildlife Acoustics app (Wildlife 
Acoustics). The detector automatically saves the time of recording, 
an audio recording, the frequencies the bat call occupies over time 
on a spectrogram and the species that it identifies to the smart-
phone app. Phase 1 consisted of audio recording from the ground 
with the Echo Meter Touch 2 for 5 min with no drone activity. After 
5 min, we began Phase 2 by setting up one of the three drones for 
the randomly chosen treatment. We either launched the drone to 
15 m above the site of detection where the drone remained hover-
ing (Figure 2a), or we carried the drone to a launch site 50 m away, 
ascended it to 15 m above the launch site and then flew the drone 
above the detection site (Figure  2b). For all tests during Phase 2, 
recording with the Echo Meter Touch 2 acoustic bat detector began 
from the ground when the drone was 15 m above the detection site 
(Figure 2). While manoeuvring, the drone was flown at a standard 
5 mph, but the drones were not manoeuvred during acoustic re-
cording. The drone hovered in place for 5 min, and afterwards was 
returned to its launch site. Once we powered off the drone, we con-
tinued to Phase 3, that is another 5 min of audio bat detection with 
no drone disturbance. This completed the trial, then we repeated the TA
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F I G U R E  1  Frequency overlap between 
drones and bats. The echolocation calls of 
the eight native bat species to Québec are 
demonstrated, with the text representing 
species common name and minimum to 
maximum frequencies (kHz) of their calls. 
The drones are also represented with 
the maximum frequency level (kHz) that 
they occupy when hovering 15 m above 
and 5 m away from the acoustic recorder. 
There is potential for overlap between 
drone noise and the lowest frequency 
bat calls. Even though the frequencies 
depicted do not overlap, the drone is 
much closer to the bats compared with 
the recorder, and so high frequencies 
may be less attenuated from the bats' 
perspectives

F I G U R E  2  Two launch methods. (a) The drone was launched above the detection site for treatments 1 (Phantom 4), 3 (Mavic 2 Pro) and 5 
(Mavic Mini). (b) The drone was launched 50 m away and was flown to the detection site for treatments 2 (Phantom 4), 4 (Mavic 2 Pro) and 6 
(Mavic Mini). Treatments were randomly assigned. The device represents the site of detection with the Echo Meter Touch 2
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procedure at a new site, conducting one trial at each site every night 
of the experiment.

To examine the effect of the drone LED lights on bat activity, 
we completed two sets of measurements using the DJI Phantom 4. 
First, we recorded bat activity during control periods with drone 
LED lights turned off at 15  m above the detection site (5 min; 
N = 10) and paired periods with drone LED lights turned on at 15 m 
above the detection site (5 min; N = 10). In each case, there was no 
drone flight or noise. Second, we recorded bat activity during Phase 
2 with and without drone LED lights turned on (N = 10 of each). For 
both sets of measurements, each paired trial was run on a different 
night, and we randomized the paired order with LED lights on or off.

2.4  |  Echolocation call identification

Bat calls detected were automatically saved and identified to species 
using Kaleidoscope Pro Analysis Software (Wildlife Acoustics) inte-
grated in the Wildlife Acoustics app. Apart from setting the region to 
Québec, the default settings were used for all software. Due to the 
difficulty differentiating between frequency spectrograms accurately, 
some species were combined: Myotis species: the eastern small-footed 
bat Myotis leibii, the little brown bat M. lucifugus and the northern long-
eared bat M. septentrionalis; and Eptesicus complex: the big brown bat 
Eptesicus fuscus and the silver-haired bat Lasionycteris noctivagans.

Automatic identifications were then followed with blind manual clas-
sification to determine if all bat recordings were valid. We completed 
the manual classification using the spectrogram viewer in Kaleidoscope 
5.4.1a (Wildlife Acoustics) and the guide to acoustics for Québec bats 
(Fabianek, 2015); bats were identified by the shape and frequency range 
of their calls. For this study, detections were defined by a sequence of 
three or more bat calls separated by the previous detection by at least 1 s 
(Fenton, 1970; Barlow et al., 2015). False detections were excluded from 
and incorrect detections corrected for the new set of manually identi-
fied data. Results of analysing the accuracy of automatic identification by 
Kaleidoscope are reported in Supporting Information 3.

Using drones requires a much smaller bat detector than has 
been traditionally used, which is why we used the lightweight Echo 
Meter Touch 2. Even so, the capabilities of bat detectors vary widely 
(Adams et al.,  2012). To compare the sensitivity and reliability of 
the Echo Meter Touch 2 with a larger, more conventional bat de-
tector, we simultaneously recorded bat detections using an Anabat 
SD2 (Titley Scientific) at ground level. The Anabat is an older, free-
standing acoustic bat detector whose accuracy is better studied 
than the Echo Meter Touch 2 (Adams et al., 2012). Methods and re-
sults of comparing the Anabat SD2 with the Echo Meter Touch 2 are 
reported in Supporting Information 4.

2.5  |  Statistical analysis

We used R version 4.0.2 (R Core Team,  2020). To test whether 
drone size or take-off distance affected the bat activity, we used 

mixed models (lme4; Bates et al., 2015) incorporating drone type 
and take-off method as the two fixed-effect explanatory variables 
against bat response, as well as their interaction, with site as a 
random effect. Overall bat activity compared between Phase 2 
and Phase 3 and separately between Phase 1 and Phase 2 is the 
response variable for each mixed model test, respectively. To fol-
low-up the lme4 analysis, we used a Tukey HSD post hoc test to 
investigate differences in mean bat response among drone types 
using the function ‘TukeyHSD’ as part of the stats r package (R 
Core Team, 2020).

Paired t tests, using the ‘t-test’ function as part of the ‘stats’ r 
package (R Core Team, 2020), compared the activity of each bat 
species as a response to the treatments. Specifically, we focused 
on the difference in species-specific bat activity between the 
three phases of the experiment (drone flight, no flight and then 
another drone flight). To examine species-specific effects, we re-
peated the same analyses for each bat species and for the two 
larger drones (Mavic Pro and Phantom) and the small drone (Mavic 
Mini) separately.

To examine habituation and determine whether bat passes per 
minute changed over time, we used a linear mixed model during 
Phases 2 and 3 with time as a fixed effect and trial as a random ef-
fect. To examine the effect of lighting on bat activity, we used pair-
wise t tests for periods with and without lights. For each analysis, we 
confirmed the normality (Shapiro–Wilk test) and homoscedasticity 
(Breusch–Pagan test) of residuals.

3  |  RESULTS

3.1  |  Drone model and launch method

The acoustic profiles of each drone reveal potential for overlap 
between the frequencies drones emit when flying and those bats 
emit when communicating (Supporting Information 3). They also 
demonstrate that take-off and landing are the loudest part of flight, 
followed by directional flight, regardless of direction. Finally, these 
profiles confirm that drone noise increases with drone size.

When considered together using a GLMM with site as a random 
effect, drone model (F3,127 = 6.04, p < 0.001), but not take-off dis-
tance (F1,127 = 0.36, p = 0.55) or interaction between model and dis-
tance (F1,127 = 0.34, p = 0.58), affected the number of bat passes 
detected between Phase 2 and Phase 3 (Figure 3). Similarly, drone 
model (F3,127 = 7.58, p < 0.001), but not take-off distance (F1,12 = 1.59, 
p = 0.21) or their interaction (F1,12 = 2.25, p = 0.14), affected the 
number of bat passes detected between Phase 1 and Phase 2. Given 
the similarity in results (but significant differences between Phases 
1 and 3 [diff = 0.74, p adj = 0.01]; possibly because Phase 3 only 
occurred when Phase 1 recorded at least one bat), we use compar-
isons between Phases 2 and 3 for subsequent analyses. Among the 
drone models, the greatest and most significant difference in means 
(as determined with post hoc Tukey tests) was found between the 
Phantom drone and the control (diff = −2.51, p adj < 0.01), followed 

 2041210x, 2022, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13807 by M
cgill U

niversity, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  847Methods in Ecology and Evolu
onKUHLMANN et al.

by the Phantom and the Mavic Mini (diff = −2.44, p adj < 0.01), the 
Mavic Pro and control (diff  =  −1.92, p adj  <  0.05) and finally the 
Mavic Pro and the Mavic Mini (diff = −1.85, p adj < 0.1). The differ-
ence between the Mavic Mini and the control was not significant 
(diff = −0.07, p adj = 1). There was no difference in number of bat 
passes detected with and without the drone LED light configuration, 
either without a flying drone (t9 = 0.31, p = 0.76) or when the drone 
was flying (t9 = 0.65, p = 0.53).

3.2  |  Species-specific effects

Drone flights impacted the detection of some, but not all, of the 
species identified during this study (Figure  4). Detections of the 
big brown/silver-haired complex (N  =  666, diff  =  −1.87, p  <  0.05) 
and hoary bats (N  =  125, diff  =  −1.25, p  <  0.05) significantly de-
creased during drone flight with the Mavic Pro and Phantom drones 
(Figure 4a). In contrast, Myotis spp., red bats and tri-coloured bats 
did not differ from one another, although sample sizes were also 
smaller (Figure 4a; all p > 0.1). For treatments with the Mavic Mini 
drones, none of the species groups varied significantly in bat passes 
in response to drone flight (Figure 4b; all p > 0.1).

3.3  |  Habituation

Bat activity sharply declined between Phase 1 (pre-flight) and the 
beginning of Phase 2 (drone flight) for the two drone models that 
had the greater effects on bats (Figure 5). Passes remained at a low 
constant during flight, and then immediately increased after flight 
(Figure 5). For the two drones that impacted the bats (Phantom and 
Mavic), the bats did not habituate to drone flight as the detections 
did not increase for the total duration of drone flight (t115 = 0.67, 

p  =  0.50). Bat numbers also did not vary in Phase 3 (t115  =  0.63, 
p  =  0.53). Additionally, the bats did not completely return after 
drone disturbance, as the after-flight detections are fewer than the 
before-flight baseline.

4  |  DISCUSSION

The fewest bat passes were detected during flights with larger UAVs 
(Figure 3). Indeed, there was no difference in bat activity between 
control recordings (no drone) and recordings with our smallest 
drone, the Mavic Mini, which does not require a basic drone licence 
by Transport Canada. Additionally, responses to the large drones 
were species specific, with the big brown/silver-haired complex and 
hoary bats strongly impacted and smaller, higher frequency bat spe-
cies less impacted (Figure 4). As the drones did not have an impact 
on the ability of the audio detector to detect bats (Ednie et al., 2021), 
the reduction in bat activity is likely due to bats avoiding the area 
when the drone was present. Here, we show that miniaturization of 
drones can reduce noise and eliminate impacts on wildlife, at least in 
the case of bats. While sensor size (e.g. ultrasensitive bat detector, 
infrared camera, high-resolution camera) may limit the use of small 
drones in some applications, our study emphasizes the importance 
of using the smallest drone possible.

Although we had initially hypothesized that a more distant take-
off would reduce the impact of drones on bat detection, as take-off 
is the loudest and highest frequency period of drone flights (Jokisch 
& Fischer, 2019), launching from 50 m away from the test site had 
no effect on bat activity compared with launching at the test site. 
Take-off is the loudest period of drone flight, but drones also emit 
the lowest frequencies when shifting positions (Jokisch & Fischer, 
2019), and can be detected acoustically up to 300  m away (Farlik 
et al., 2019). Our results, along with the mixed effect of researcher 

F I G U R E  3  Larger drone models 
correlate with a larger decrease in bat 
activity. Change in bat passes (# of bat 
passes during flight minus # of bat passes 
after flight) among three drone models 
and the control. Statistical significance is 
marked by ‘**’ (p < 0.01) and ‘*’ (p < 0.05). 
The brackets indicate any statistical 
significance between the two treatments 
at the ends of the bracket. The response 
was calculated from the detections during 
and after flight, and then averaged
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presence on wildlife activity (Larm et al.,  2019; Piel et al.,  2014; 
Rosenfield et al.,  2007) and the limited evidence on the effect of 
flight speed on drone noise (Tinney & Sirohi, 2018), document few 
reasons to favour one launch method over the other. However, it 
may be more cost-effective to launch the drone at the site of detec-
tion due to drone’s limited battery life. Drone noise has presented 
issues for several wildlife studies and has previously been resolved 
by distancing equipment or launching from distances farther away 
from the targets (Brisson-Curadeau et al.,  2017; Broset,  2018). 
Alternative approaches, such as creating home-made baffles (i.e. a 
device to restrain or minimize sound) for the drones, have also been 
successful (Fu et al., 2018; Kloepper & Kinniry, 2018). In this case, 
using smaller drones was the most successful in diminishing the ef-
fects of drone noise on wildlife activity.

When the two largest and loudest drone models were flown in 
bat habitat, bat detections significantly decreased compared with 
the control (Figure 3). Indeed, the effect of drone presence on bat 
detections was proportional to drone size. The effect does not ap-
pear to be due to the presence of the LED lights on the drone, as 

there was no statistical difference in bat activity between periods 
with and without the LED lights for the largest drone (Phantom 4). 
Size and noise of drones are usually correlated (Christie et al., 2016; 
Miljković, 2018), so it is difficult to disentangle whether the bats were 
deterred by drone’s noise or its physical presence. Fu et al.  (2018) 
observed no collisions between bats and drones in their experiment, 
indicating that bats evade airspace obstacles. Since bats also tend to 
avoid noisy environments (Murphy et al., 2009), they could respond 
to both drone noise and presence. The frequency ranges of each 
drone did not demonstrate a clear association between drone size 
and noise. In fact, the quietest drone generated some of the highest 
frequencies while having minimal impact on bat detections. Thus, 
noise amplitude rather than frequency caused us to detect lower 
bat activity.

Some bat species were more sensitive to drone disturbance than 
others, with the big brown/silver-haired complex and hoary bats 
showing significantly fewer bat passes in the presence of the large 
drones (Figure 4). Even the Mavic Mini showed a tendency for lower 
bat activity for these species. In contrast, no such effect occurred 

F I G U R E  4  Effect of drones on bat 
detections by bat species group. The 
average number of passes from each 
species group is plotted and separated 
based on which phase of the experiment 
the bat was detected in for treatments 
with (a) Mavic Pro and Phantom drone 
flight and (b) Mini drone flight. Analysis 
was conducted using paired t tests 
on a 95% confidence level. Statistical 
significance is marked by ‘*’ (p adj < 0.05)
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in the presence of drones regardless of size for Myotis species, the 
eastern red bat and the tri-coloured bat, although sample sizes were 
much smaller. This difference is because big brown (44–28  kHz), 
silver-haired (39–24 kHz) and hoary bats (28–20 kHz) have the low-
est frequency calls with the most potential for overlap with drone 
noise; indeed, hoary bats with the lowest frequency calls were the 
most impacted. The two largest drones occupied noticeable fre-
quencies below 6 kHz when hovering, compared with below 7 kHz 
for the Mavic Mini. As calls emitted by bats in Québec occupy fre-
quencies from 75 to 20 kHz (Fabianek, 2015), there is potential fre-
quency overlap between drone noises and bat calls, especially for 
the bats with lower frequency calls. As the Mini’s frequency ranges 
are closer to overlapping with bat calls than the Phantom and Pro’s 
frequency ranges, it is possible that frequency overlap was not an 
issue in this study and that drone size and noise level are larger 
bat deterrents than frequency overlap. Regardless, it appears that 
drones have the most impact on bats with low-frequency calls that 
overlap more closely with the drone frequency.

Bats did not habituate to drone flight within 5  min (Figure  5). 
This is surprising, as many other flying animals rapidly habituate to 
drones within a few minutes (Brisson-Curadeau et al., 2017; Chabot 
& Bird,  2015). For example, breeding tree swallows habituated to 
drone flights in a similar amount of time that they habituated to 
other foreign objects, indicating that drone flight is not a unique 
stressor for some species (Scholten et al., 2020). In contrast, some 
terrestrial mammals became more likely to react to drones with in-
creasing number of flights (Brunton et al., 2019; Hahn et al., 2016) 
while others rapidly habituate (Ditmer et al.,  2018). Regardless, 
our results demonstrate that bats do not habituate to drone flight 
within minutes, but they are not permanently disturbed as bat ac-
tivity rebounded quickly after drone flight ended. Seeing as our 
drone surveys only lasted 5 min, these results cannot determine the 
implications of a longer drone flight on wildlife activity. Currently, 
drone-based wildlife surveys are limited by the short battery life of 

modern drones, but with technological advancements, the effects of 
extended drone flights on wildlife activity will become another fac-
tor wildlife surveyors must consider, especially with larger drones.

While using smaller drones is undoubtedly the solution to mini-
mizing the effects of drone-based acoustic surveys on wildlife, small 
drones have their limitations and are not the most suitable devices 
for other types of surveys. For instance, many wildlife surveys done 
with drones rely on specialized cameras—including thermal infra-
red, infrared and high-resolution video cameras—to detect wildlife 
(Fu et al., 2018; Hodgson et al., 2018). Attaching other sensors to 
drones, such as GPS devices and frequency receivers for radiote-
lemetry (Desrochers et al., 2018), would also be heavy payloads ne-
cessitating a large drone. Even some acoustic detectors, such as the 
Anabat SD2, weigh more than the Mavic Mini. Thus, we encourage 
researchers to minimize drone noise by using the smallest and qui-
etest drone available within the needs of their study or modify their 
drones to produce less noise.

Some drones cause less disturbance and are better suited for 
acoustic wildlife surveys compared with others. Flying drones in 
bat habitat demonstrates how species of a nocturnal, echolocating 
order are deterred by aerial noises and obstacles, but response to 
drone flights also differed among species. Nonetheless, using the 
smallest drone eliminated the impact of the drone with no differ-
ence from control flights. Moreover, the Mini is classified as a toy 
in Canada and therefore does not require a permit to fly, further 
facilitating its use, although still subject to wildlife, protected area 
and other regulations. We argue that the use of small drones in wild-
life studies should be more widely studied, as drone miniaturization 
improves drone-based acoustic wildlife surveys by eliminating any 
measurable impact of drones on wildlife.

ACKNOWLEDG EMENTS
The authors thank the Kenauk Institute for hosting their data col-
lection, specifically Liane Nowell for her support and everyone who 

F I G U R E  5  Bat activity over time for 
each drone treatment. Detections were 
separated by each minute of the trial for 
the three drones and the total detections 
of each minute are plotted. Minutes 
1 through 5 represent the first phase, 
before drone flight; minutes 6 through 10 
represent the second phase, during drone 
flight; and minutes 11 through 15 are the 
last phase, after drone flight

 2041210x, 2022, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13807 by M
cgill U

niversity, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



850  |   Methods in Ecology and Evolu
on KUHLMANN et al.

helped collect data, including Mailys Laprevotte. They also thank 
the Kenneth Molson Foundation and the Natural Sciences and 
Engineering Research Council of Canada for funding this research, 
and J. Hare for providing equipment used to conduct data collection.

CONFLIC T OF INTERE S T
The authors declare no competing interests.

AUTHORS'  CONTRIBUTIONS
K.K., K.H.E., A.F and E.B.C. conceived the ideas and designed the 
methodology; K.K. collected the data; K.K., K.H.E., A.F. and E.B.C. 
analysed the data; K.K. led the writing of the manuscript with sub-
stantial revisions from all authors. All authors contributed critically 
to the drafts and gave final approval for publication.

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1111/2041-210X.13807.

DATA AVAIL ABILIT Y S TATEMENT
Data available from the Dryad Digital Repository https://doi.
org/10.5061/dryad.g4f4q​rfs1 (Kuhlmann et al., 2022).

ORCID
Kayla Kuhlmann   https://orcid.org/0000-0002-3623-3530 
Émile Brisson-Curadeau   https://orcid.org/0000-0001-5795-9915 
Kyle H. Elliott   https://orcid.org/0000-0001-5304-3993 

R E FE R E N C E S
Adams, A. M., Jantzen, M. K., Hamilton, R. M., & Fenton, M. B. (2012). Do 

you hear what I hear? Implications of detector selection for acous-
tic monitoring of bats. Methods in Ecology and Evolution, 3(6), 992–
998. https://doi.org/10.1111/j.2041-210X.2012.00244.x

Allen, L. C., Hristov, N. I., Rubin, J. J., Lightsey, J. T., & Barber, J. R. (2021). 
Noise distracts foraging bats. Proceedings of the Royal Society B, 
288, 2020–2689. https://doi.org/10.1098/rspb.2020.2689

August, T., & Moore, T. (2019). Autonomous drones are a viable tool for 
acoustic bat surveys. bioRxiv. https://doi.org/10.1101/673772

Barlow, K. E., Briggs, P. A., Haysom, K. A., Hutson, A. M., Lechiara, N. 
L., Racey, P. A., Walsh, A. L., & Langton, S. D. (2015). Citizen sci-
ence reveals trends in bat populations: The National bat Monitoring 
Programme in Great Britain. Biological Conservation, 182, 14–26. 
https://doi.org/10.1016/j.biocon.2014.11.022

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed-effects models using lme4. Journal of Statistical Software, 
67(1), 1–48. https://doi.org/10.18637/​jss.v067.i01

Brisson-Curadeau, É., Bird, D., Burke, C., Fifield, D. A., Pace, P., Sherley, 
R. B., & Elliott, K. H. (2017). Seabird species vary in Behavioural 
response to drone census. Scientific Reports, 7(1), 1–9.

Broset, S. (2018). Assessment of UAV potential for bioacoustic monitor-
ing of birds and bats: Tests under controlled conditions in Belgium 
(Thesis). Gembloux Agro-Bio Tech. Retrieved from http://hdl.han-
dle.net/2268.2/5155

Brunton, E., Bolin, J., Leon, J., & Burnett, S. (2019). Fright or flight? 
Behavioural responses of kangaroos to drone-based monitoring. 
Drones, 3(2), 41. https://doi.org/10.3390/drone​s3020041

Chabot, D., & Bird, D. M. (2015). Wildlife research and management 
methods in the 21st century: Where do unmanned aircraft fit in? 

Journal of Unmanned Vehicle Systems, 3(4), 137–155. https://doi.
org/10.1139/juvs-2015-0021

Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M., & Hanson, L. 
(2016). Unmanned Aircraft Systems in Wildlife Research: Current 
and future applications of a transformative technology. Frontiers 
in Ecology and the Environment, 14(5), 241–251. https://doi.
org/10.1002/fee.1281

Desrochers, A., Tremblay, J. A., Aubry, Y., Chabot, D., Pace, P., & Bird, 
D. M. (2018). Estimating wildlife tag location errors from a 
VHF receiver mounted on a drone. Drones, 2(4), 44. https://doi.
org/10.3390/drone​s2040044

Ditmer, M. A., Vincent, J. B., Werden, L. K., Tanner, J. C., Laske, T. G., 
Iaizzo, P. A., Garshelis, D. L., & Fieberg, J. R. (2015). Bears show 
a physiological but limited behavioral response to unmanned ae-
rial vehicles. Current Biology, 25(17), 2278–2283. https://doi.
org/10.1016/j.cub.2015.07.024

Ditmer, M. A., Werden, L. K., Tanner, J. C., Vincent, J. B., Callahan, P., 
Iaizzo, P. A., Laske, T. G., & Garshelis, D. L. (2018). Bears habitu-
ate to the repeated exposure of a novel stimulus, unmanned air-
craft systems. Conservation Physiology, 6(1), coy067. https://doi.
org/10.1093/conph​ys/coy067

DJI (n.d.). DJI Official Website. Retrieved from https://www.dji.com/ca.
Duporge, I., Spiegel, M. P., Thomson, E. R., Chapman, T., Lamberth, 

C., Pond, C., Macdonald, D. W., Wang, T., & Klinck, H. (2021). 
Determination of optimal flight altitude to minimise acoustic 
drone disturbance to wildlife using species audiograms. Methods in 
Ecology and Evolution, 12, 2196–2207.

Ednie, G., Bird, D. M., & Elliott, K. H. (2021). Fewer bat passes are de-
tected during small. Commercial drone flights. Scientific Reports, 11, 
11529.

Fabianek, F. (2015). Formation Acoustique sur les Chiroptères du Québec. 
Groupe Chiroptères Québec.

Farlik, J., Kratky, M., Casar, J., & Stary, V. (2019). Multispectral detec-
tion of commercial unmanned aerial vehicles. Sensors, 19(7), 1517. 
https://doi.org/10.3390/s1907​1517

Fenton, M. B. (1970). A technique for monitoring bat activity with 
results obtained from different environments in southern 
Ontario. Canadian Journal of Zoology, 48(4), 847–851. https://doi.
org/10.1139/z70-148

Froidevaux, J. S. P., Zellweger, F., Bollmann, K., & Obrist, M. K. (2014). 
Optimizing passive acoustic sampling of bats in forests. Ecology 
and Evolution, 4(24), 4690–4700. https://doi.org/10.1002/
ece3.1296

Fu, Y., Kinniry, M., & Kloepper, L. N. (2018). The Chirocopter: A UAV for 
recording sound and video of bats at altitude. Methods in Ecology 
and evolution, 9(6), 1531–1535.

Goerlitz, H. R. (2018). Weather conditions determine attenuation and 
speed of sound: Limitations for monitoring and analyzing bat 
echolocation. Ecology and Evolution, 8(10), 5090–5100. https://doi.
org/10.1002/ece3.4088

Gonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & 
Gaston, K. J. (2016). Unmanned aerial vehicles (UAVs) and artificial 
intelligence revolutionizing wildlife monitoring and conservation. 
Sensors, 16(97), 1–18.

Hahn, N., Mwakatobe, A., Konuche, J., De Souza, N., Keyyu, J., Goss, 
M., Chang’a, A., Palminteri, S., Dinerstein, E., & Olson, D. (2016). 
Unmanned aerial vehicles mitigate human-elephant Conflict on the 
Borders of Tanzanian parks: A case study. Oryx, 51(3), 513–516. 
https://doi.org/10.1017/S0030​60531​6000946

Hodgson, J. C., & Koh, L. P. (2016). Best practice for Minimising un-
manned aerial vehicle disturbance to wildlife in biological field re-
search. Current Biology, 26(10), R404–R405.

Hodgson, J. C., Mott, R., Baylis, S. M., Pham, T. T., Wotherspoon, S., 
Kilpatrick, A. D., Raja Segaran, R., Reid, I., Terauds, A., & Koh, L. P. 
(2018). Drones count wildlife more accurately and precisely than 
humans. Methods in Ecology and Evolution, 9(5), 1160–1167.

 2041210x, 2022, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13807 by M
cgill U

niversity, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://publons.com/publon/10.1111/2041-210X.13807
https://publons.com/publon/10.1111/2041-210X.13807
https://doi.org/10.5061/dryad.g4f4qrfs1
https://doi.org/10.5061/dryad.g4f4qrfs1
https://orcid.org/0000-0002-3623-3530
https://orcid.org/0000-0002-3623-3530
https://orcid.org/0000-0001-5795-9915
https://orcid.org/0000-0001-5795-9915
https://orcid.org/0000-0001-5304-3993
https://orcid.org/0000-0001-5304-3993
https://doi.org/10.1111/j.2041%E2%80%90210X.2012.00244.x
https://doi.org/10.1098/rspb.2020.2689
https://doi.org/10.1101/673772
https://doi.org/10.1016/j.biocon.2014.11.022
https://doi.org/10.18637/jss.v067.i01
http://hdl.handle.net/2268.2/5155
http://hdl.handle.net/2268.2/5155
https://doi.org/10.3390/drones3020041
https://doi.org/10.1139/juvs-2015-0021
https://doi.org/10.1139/juvs-2015-0021
https://doi.org/10.1002/fee.1281
https://doi.org/10.1002/fee.1281
https://doi.org/10.3390/drones2040044
https://doi.org/10.3390/drones2040044
https://doi.org/10.1016/j.cub.2015.07.024
https://doi.org/10.1016/j.cub.2015.07.024
https://doi.org/10.1093/conphys/coy067
https://doi.org/10.1093/conphys/coy067
https://www.dji.com/ca
https://doi.org/10.3390/s19071517
https://doi.org/10.1139/z70-148
https://doi.org/10.1139/z70-148
https://doi.org/10.1002/ece3.1296
https://doi.org/10.1002/ece3.1296
https://doi.org/10.1002/ece3.4088
https://doi.org/10.1002/ece3.4088
https://doi.org/10.1017/S0030605316000946


    |  851Methods in Ecology and Evolu
onKUHLMANN et al.

Jokisch, O., & Fischer, D. (2019). Drone sounds and environmental signals 
– A first review. 30th ESSV Conference: TU Dresden.

Kloepper, L. N., & Kinniry, M. (2018). Recording animal vocalizations from a 
UAV: Bat echolocation during roost re-entry. Scientific Reports, 8, 7779.

Kloepper, L. N., Linnenschmidt, M., Blowers, Z., Branstetter, B., Ralston, 
J., & Simmons, J. A. (2016). Estimating colony sizes of emerging bats 
using acoustic recordings. Royal Society Open Science, 3(3), 160022.

Kuhlmann, K., Fontaine, A., Brisson-Curadeau, É., Bird, D., Elliott, K.H. 
(2022). Data from: Miniaturization eliminates detectable impacts 
of drones on bat activity. Dryad Digital Repository. https://doi.
org/10.5061/dryad.g4f4q​rfs1

Kunz, T. H., Betke, M., Hristov, N. I., & Vonhof, M. J. (2009). Methods 
for assessing Colony size, population size, and relative abundance 
of bats. In T. H. Kunz & S. Parsons (Eds.), Ecological and behavioral 
methods for the study of bats (2nd ed., pp. 133–157). Johns Hopkins 
University Press. Retrieved from: https://www.cs.bu.edu/fac/
betke/​paper​s/KunzB​etkeH​risto​vVonh​of-2009.pdf.

Larm, M., Erlandsson, R., Norén, K., & Angerbjörn, A. (2019). Fitness 
effects of ecotourism on an endangered carnivore. Animal 
Conservation, 23(4), 386–395. https://doi.org/10.1111/acv.12548

Miljković, D. (2018). Methods for attenuation of unmanned aerial ve-
hicle noise. 2018 41st International Convention on Information and 
Communication Technology, Electronics and Microelectronics (MIPRO), 
0914-0919. 10.23919/MIPRO.2018.8400169

Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., & 
Tablado, A. (2017). Unmanned aircraft systems as a new source of dis-
turbance for wildlife: A systematic review. PLoS ONE, 12(6), e0178668.

Mulero-Pázmány, M., Stolper, R., van Essen, L. D., Negro, J. J., & Sassen, 
T. (2014). Remotely piloted aircraft systems as a rhinoceros anti-
poaching tool in Africa. PLoS ONE, 9(1), e0083873.

Murphy, S., Hill, D., & Greenaway, F. (2009). Pilot study of a technique for 
investigating the effects of artificial light and noise on bat activity. 
Monitoring Light and Noise, 1–32.

Piel, A. K., Lenoel, A., Johnson, C., & Steward, F. A. (2014). Deterring 
poaching in western Tanzania: The presence of wildlife research-
ers. Global Ecology and Conservation, 3, 188–199. https://doi.
org/10.1016/j/gecco.2014.11.014

Plank, M., Fiedler, K., & Reiter, G. (2012). Use of forest strata by bats in 
temperate forests. Journal of Zoology, 286, 154–162.

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. Retrieved from https://
www.R-project.org/

Rosenfield, R. N., Grier, J. W., & Fyfe, R. W. (2007). Reducing manage-
ment and research disturbance. In D. M. Bird & K. L. Bildsteind 

(Eds.), Raptor research and management techniques (pp. 351–364). 
Hancock House.

Scholten, B. D., Beard, A. R., Choi, H., Baker, D. M., Caulfield, M. E., & 
Proppe, D. S. (2020). Short-term exposure to unmanned aerial ve-
hicles does not Alter stress responses in breeding tree swallows. 
Conservation Physiology, 8(1), coaa080.

Scholten, C. N., Kamphuis, A. J., Vredevoogd, K. J., Lee-Strydhorst, K. G., 
Atma, J. L., Shea, C. B., Lamberg, O. N., & Proppe, D. S. (2019). Real-
time thermal imagery from an unmanned aerial vehicle can locate 
ground nests of a grassland songbird at rates similar to traditional 
methods. Biological Conservation, 233, 241–246.

Skalak, S. L., Sherwin, R. E., & Brigham, R. M. (2012). Sampling period, 
size and duration influence measures of bat species richness from 
acoustic surveys: Effective acoustic monitoring. Methods in Ecology 
and Evolution, 3(3), 490–502.

Tinney, C. E., & Sirohi, J. (2018). Multirotor drone noise at static thrust. 
AIAAJ, 56(7), 2816–2826. https://doi.org/10.2514/1.J056827

Vas, E., Lescroel, A., Duriez, O., Boguszewski, G., & Grémillet, D. (2015). 
Approaching birds with drones: First experiments and ethical 
guidelines. Biology Letters, 11, 20140754.

Weimerskirch, H., Prudor, A., & Schull, Q. (2018). Flights of drones 
over sub-Antarctic seabirds show species-and status-specific 
behavioural and physiological responses. Polar Biology, 41(2), 
259–266.

Wilson, A. M., Barr, J., & Zagorski, M. (2017). The feasibility of counting 
songbirds using unmanned aerial vehicles. The Auk: Ornithological 
Advances, 134(2), 350–362.

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Kuhlmann, K., Fontaine, A., Brisson-
Curadeau, É., Bird, D. M. & Elliott, K. H. (2022). Miniaturization 
eliminates detectable impacts of drones on bat activity. 
Methods in Ecology and Evolution, 13, 842–851. https://doi.
org/10.1111/2041-210X.13807

 2041210x, 2022, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13807 by M
cgill U

niversity, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5061/dryad.g4f4qrfs1
https://doi.org/10.5061/dryad.g4f4qrfs1
https://www.cs.bu.edu/fac/betke/papers/KunzBetkeHristovVonhof-2009.pdf
https://www.cs.bu.edu/fac/betke/papers/KunzBetkeHristovVonhof-2009.pdf
https://doi.org/10.1111/acv.12548
https://doi.org/10.23919/MIPRO.2018.8400169
https://doi.org/10.1016/j/gecco.2014.11.014
https://doi.org/10.1016/j/gecco.2014.11.014
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.2514/1.J056827
https://doi.org/10.1111/2041-210X.13807
https://doi.org/10.1111/2041-210X.13807

